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Abstract. We consider the multifractal properties of a quasiperiodic tight binding Hamiltonian
where the hopping elements are arranged according to the Fibonacci chain. By using the trace
map approach and an assumption relating the cycles of the trace map to the integrated density
of states, it is shown that the maximal scaling of the spectrum does not always occur at the
edges or the centre of the spectrum, which is confirmed by numerical simulations. A good
description of the multifractal spectrumf (α) is obtained by applying the 3z-model which was
recently developed for the Harper model.

Despite their conceptional and formal simplicity one-dimensional quasiperiodic Hamiltoni-
ans display a complex hierarchical behaviour concerning both energy spectrum and wave-
functions. We consider in the following the Hamiltonian

H =
∑
i

ti+1|i〉〈i + 1| + ti |i〉〈i − 1| (1)

where the hopping elementsti ∈ {tA, tB} are arranged according to the Fibonacci chain.
This quasiperiodic chain can be obtained by the substitution rule (A 7→ B, B 7→ BA).
After n iterations a chain offn letters is obtained, wherefn are the Fibonacci numbers
(fn = fn−1+fn−2, f0 = f1 = 1). Asymptoticallyfn grows likeω−n, whereω = (√5−1)/2
is the golden number. The spectral measure of the quasiperiodic Hamiltonian (1) has been
proven to be singular continuous for alltA 6= tB [1, 2]. Moreover, the spectrum is a Cantor
set of zero Lebesgue measure. The most powerful method to characterize spectra of this
kind quantitatively is the multifractal analysis, yielding a multifractal spectrumf (α) [3, 4].
The functionf (α) which can numerically be calculated by means of the thermodynamic
formalism gives the fractal dimension of the set of energies where the spectral measure
scales with the local exponentα. Furthermore,f (α) is via its Legendre transformτ(q)
directly related to the generalized (Rényi) dimensionsDq = τ(q)/(q−1). These have been
shown to play an important role in explaining the anomalous diffusion properties found
in the quantum dynamics of quasiperiodic systems [5–9]. In this paper we address the
following two related issues: the local scaling of the spectral measure at certain energies
and the global scaling functionf (α).

As for the local scaling, the exponents at the edges and centre of the spectrum have
been calculated by means of a renormalization analysis based on the trace map approach
in a series of pioneering articles [10–15]. It was conjectured that these exponents were
the minimal and maximal ones [12]. In the following the Fibonacci trace-map has been
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extensively investigated as a dynamical system and deep results on the structure of its cycles
have been found [16, 17]. These results, however, have not yet been used for calculating
the local scaling at other points than centre or edges of the spectrum. We will give a
method linking the scaling at any rational value of the integrated density of states (IDOS)
to the period of the cycle which governs the scaling at this point of the spectrum. By these
means we find an exact result for the scaling at one third of the IDOS, which disproves
the conjecture about the occurence of maximal scaling at the centre or the edges of the
spectrum.

Concerning the multifractal spectrum, a first approximation off (α) based on the scaling
of the edges and the centre of the spectrum was given in [18]. By including further scaling
properties as we did for the Harper model [19] we overcome a principal drawback of this
simple approximation and arrive at a description of the multifractal spectrum which agrees
well with numerical simulations.

The rest of the paper consists of two parts: First we consider the scaling properties
of the spectrum by means of the trace-map approach, second we discuss the multifractal
properties in the framework of the 3z-model.

An important step towards the understanding of the scaling properties of the spectrum of
the Fibonacci chain was achieved by means of the trace map. We describe the main points
that are important for the following, a detailed discussion can be found in [12]. The first step
to the trace map is the reformulation of the eigenvalue equationti+1ψi+1 + tiψi−1 = Eψi
in terms of transfer matrices. Due to the inflation properties of the Fibonacci chain and
the fact that the transfer matrices are elements ofSL(2, R) one can find a simple recursion
relation for the traces of the transfer matricesTn, which describe the mapping of(ψ1, ψ0)

to (ψfn, ψfn−1). With xn := 1
2Tr Tn this recursion is given by [11, 14]

xn+1 = 2xnxn−1− xn−2 (2)

with initial conditions

x−1 = 1

2

(
tA

tB
+ tB
tA

)
x0 = E

2tB
x1 = E

2tA
. (3)

All energies for whichxn 6 1 are in the spectrum of thenth approximant. The
dynamical mapR3 → R3 which is given by the recursion shows a remarkable invariant
I = x2

n+1+x2
n+x2

n−1−2xn+1xnxn−1−1 [14] which has been interpreted as Fricke character
[21]. Due to the initial condition the invariant is fixed by the parameters of the Hamiltonian
to beI = (ρ − ρ−1)2/4, whereρ = tA/tB .

The importance of the trace map lies in the fact that its periodic orbits correspond to
special points in the spectrum [12]. Furthermore the minimal eigenvalue of the linearized
mapλp gives the local scaling exponent

α = p lnω

ln λp
(4)

wherep denotes the length of the periodic orbit. The exponentα describes the shrinking of
the band widths1(n) as a function of the length of the approximant:1(n) ∼ f −1/α

n ∼ ωn/α.
The first orbits to be identified were the 6-cycle

C6 :

 a

0
0

 7→
 0

0
−a

 7→
 0
−a
0

 7→
 −a0

0

 7→
 0

0
a

 7→
 0
a

0

 7→
 a

0
0


(5)
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wherea = √I + 1, governing the scaling of the centre of the spectrum and the 2-cycle

C2 :

 a

b

b

 7→
 b

a

a

 7→
 a

b

b

 (6)

wherea = J +√J 2− J , b = J −√J 2− J , J = 1
8(3+

√
25+ 16I ), governing the scaling

at the edge of the spectrum. The corresponding local exponents are given by (4) with

λ6 = (−2(I + 1)+
√

4(I + 1)2+ 1)2 (7)

and

λ2 = 1
2(8J − 1−

√
(8J − 1)2− 4). (8)

It has been conjectured that these two local exponents are the extreme exponents found in
the spectrum. For simplicity we define contraction factorsz which determine the scaling of
the bandwidth with respect to two inflation steps†. Therefore,z6 = λ1/3

6 , z2 = λ2. These
two contraction factors are shown in figure 3. For the periodic limitρ = 1 the expected
behaviour is obtained:z6 = ω2, α6 = 1, i.e. the bands at the centre scale inversely to the
length of the chain, andz2 = ω4, α2 = 1

2, i.e. the bands at the edges of the spectrum scale
inversely to the length squared due to the van Hove singularities.

The question arises whether these two scaling exponents are really the extremal ones.
If this were the case the spectrum would be monofractal forρc ≈ 0.094 408, wherez2 = z6.
In order to answer this question, we investigate the connection between cycle and energy
by considering the trace map in the limit of the periodic chaintA = tB = 1. In this special
case, the recursion (2) can be solved explicitely yielding

xn = cos

(
fn arccos

E

2

)
. (9)

For rational values of12π arccosE2 =: Q/N the sequencexn is necessarily periodic with the
period depending (a priori ) onQ andN . In the following table the values of the period are
given forN 6 10. The period does not depend on Q, providedN andQ are coprime. Due
to (9) the periods of the trace map forI = 0 are related to those of the modified Fibonacci
rule fn+1 = fn + fn−1 modN‡

N 1 2 3 4 5 6 7 8 9 10
Period 1 3 4 6 10 12 8 12 12 30.

(10)

Can this connection between the energy and the period of the corresponding cycle
of the trace map, which is valid for the periodic chain (ρ = 1), be extended on the
quasiperiodically modulated chain (ρ < 1)? For the cycle governing the edge of the
spectrum, the corresponding energy changes as a function of the parameterρ, whereas
the IDOS of this energy is independent ofρ. We now make the natural assumption that
this behaviour is not only valid for the edges and the centre of the spectrum, but also for
the general case, i.e. we assume that a given cycle governs the scaling at an energy the
IDOS of which is independent ofρ. As for the periodic chain (with odd lengthq and
Bloch vectork = 0) the energy levels are given byEj = 2 cos(πj/q) and as for this case
E = 2 cos(2πQ/N), we find that the cycle(Q/N) corresponds to the scaling of the energy
level with IDOS= j/q = 2Q/N .

† Referring totwo inflation steps is arbitrary, but makes visualization simple.
‡ A generalization of this rule is known as a Fibonacci random number generator. We refer the reader to Parker
[22] for details on the structure of the cycles. A related question is the structure of the Fibonacci orbits inSU(2)
which is treated in Wagner and Kramer [22].
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As an illustration we consider first the cycles corresponding to the centre and edge of
the spectrum. Take for example the energy at the centre,E = 0, i.e. Q/N = 1

4, then
xn = cos(fnπ/2), which is periodic with period 6 and is the special case of (5) forI = 0.
In general, however, the generic cycle (forρ 6 1) can be degenerated forρ = 1. Then the
period of the generic cycle is an integer multiple of the one forρ = 1. This is the case for
the edges of the spectrum. Consider the upper edge of the spectrum,E = 2, Q/N = 0

1,
xn = 1, which is the degenerated case of (6) forI = 0. More interesting is the lower edge,
E = −2, Q/N = 1

2, i.e. xn = cos(fnπ), which is periodic with period three. Since there
is no 3-cycle of the trace map which depends on one free parameter, we are looking for a
6-cycle that reduces forI = 0 to xn = cos(fnπ). This cycle can be found to be

C ′6 :

 a

b

a

 7→
 b

a

−b

 7→
 a

−b
−a

 7→
 −b−a
−b

 7→
 −a−b

a


7→
 −ba

b

 7→
 a

b

a

 (11)

with a = −(J +√J 2− J ), b = a/(2a+1), J = 1
8(3+

√
25+ 16I ). As expected from the

symmetry of the spectrum the local exponent calculated by linearization around this 6-cycle
is the same as for the upper edge (8). We remark that two cycles corresponding toE and
−E are related by a symmetry property of the trace map [16]. It can be shown that the
periods of the two cycles are either equal or related by a factor three [16], the latter being
the case for the upper and lower edge of the spectrum.

Apart from these cycles describing the scaling at the centre and the edges of the
spectrum, the next simple ones are those withN = 3, corresponding to a cycle of length
four andN = 7, corresponding to a cycle of length eight.

In order to find the 4-cycle governing the scaling at the IDOS= 2
3, we take the (unique)

one which reduces in the periodic limit to the known solutionxn = cos(2πfn/3). It is given
by

C4 :

 − 1
2
a

− 1
2

 7→
 a

− 1
2

1
2 − a

 7→
 − 1

2
1
2 − a
− 1

2

 7→
 1

2 − a
− 1

2
a

 7→
 − 1

2
a

− 1
2

 (12)

wherea = (1+√9+ 8I )/4. The linearization around this cycle yields

z4 =
√

16I + 7−
√
(16I + 7)2− 4

2
. (13)

In figure 1 this result is compared with data from numerical simulations. The agreement is
good in the whole range 0< ρ < 1. The consequences of this new contraction factor are
obvious from figure 3, where the three analytically known contraction factors are plotted:
the contraction factor corresponding to the IDOS= 2

3 is always bigger than the one at the
edges of the spectrum. Therefore in a certain range of the parameter 0< ρ < 0.135 366
the maximal contraction factor, corresponding to the minimal shrinking of the bands and to
the maximal local exponent of the spectral measure is neither at the centre nor at the edges
of the spectrum. Furthermore, forρ = ρc, where edges and centre scale in the same way,
the spectrum is not a monofractal sincez4 > z2 = z6.

We consider now the next more complicated case,N = 7 corresponding to an 8-cycle
of the trace map. In this case the orbit corresponding to the IDOS= 2

7 is given by the
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Figure 1. The scaling of the bands at the IDOS= 2
3 compared with the analytical result by

linearizing around the 4-cycle. The numerical results were obtained with the approximants
f7 = 21 and f15 = 987. The corresponding bands were those with index 14 and 658,
respectively.

initial condition x−2 = a, x−1 = c, x0 = a, wherea andc as a function of the invariantI
are given by the following equations:

64a2(2a − 1)2(2a + 1)2I 2− 16a(2a − 1)(8a3+ 4a2− 4a − 1)(8a3+ 2a2− 5a − 1)I

+(1+ 8a − 16a2− 8a3+ 16a4)(8a3+ 4a2− 4a − 1)2 = 0

and

2a2+ c2− 2a2c − 1= I. (14)

For the periodic caseI = 0 one finds (as one solution)a = cos6π
7 , c = cos2π

7 and the cycle
(cos6π

7 , cos2π
7 , cos6π

7 , cos4π
7 , cos4π

7 , 1, cos4π
7 , cos4π

7 ) in agreement withxn = cos(fn 4π
7 ).

By solving the two equations for general values ofI and keeping track of the solution which
yields xn = cos(fn 4π

7 ) for I → 0 one obtains the 8-cycle, the linearization around which
describes the scaling at the IDOS= 2

7. The formula of the calculated eigenvalues of the
linearized map are too cumbersome to be given explicitly. Thus we have calculated the
numerical values and compare them with data obtained by diagonalization in figure 2. The
agreement is satisfactory but not as good as in the case of the IDOS= 2

3. This is probably
due to finite-size effects which are more important forN = 7 than forN = 3.

After having considered the local scaling properties we now turn to the description
of the global scaling functionf (α), defined as the Legendre transform ofτ(q) which is
implicitly given by requiring that the partition function

0(τ, q) = 1

f
q
n

fn∑
j=1

1−τj (15)
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Figure 2. The scaling of the bands at the IDOS= 2
7 compared with the result obtained

by linearizing around the 8-cycle. The numerical results were obtained with the approximants
f7 = 21 andf15 = 987. The corresponding bands were those with index 6 and 282, respectively.
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Figure 3. The analytically known contraction factorsz2, z6 and z4 as a function of the
quasiperiodic modulationρ.
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−
+

Figure 4. Quantitative version of the Hofstadter rules. The functionsf±,0(E) give the mapping
of the energies of an approximant of lengthfn−2 resp.fn−3 to those of an aproximant of length
fn as described by equation (17).

be constant in the limitn → ∞, where1j denotes the widths of thefn individual
(nonoverlapping) bands of an approximant.

To this aim we recall that the spectrum of an approximantfn of the Fibonacci chain
can be recursively built from the spectra of the approximantsfn−2 andfn−3. This was first
noticed in the limitρ → 0, where perturbative renormalization shows that the spectrum
consists of three clusters, the centre cluster and two side clusters. The centre cluster is a
rescaled version of the spectrum of the approximantfn−3 with scaling factorρ2, the edges of
the spectrum are rescaled versions of the spectrum offn−2 with scaling factorρ/2 [20, 18].
A multifractal analysis based on this observation yields [18]

2ω2q

zτR
+ ω

3q

zτS
= 1 (16)

wherezR andzS are the contraction factors at the edges and the centre, respectively. These
contraction factors are exactly given by the trace map,zR = z2 = λ2 andzS = z3/2

6 = λ1/2
6 ,

yielding in first nonvanishing order forρ → 0 the expressions found by perturbative
renormalizationzR = ρ/2 andzS = ρ2.

The multifractal spectrumf (α) as a Legendre transformation ofτ(q) obtained by
equation (16) has the main drawback thatf (αmax) or f (αmin) (for ρ < ρc, respectively
ρ > ρc) does not vanish in contradiction to numerical results. This problem is due to the
assumption that the side clusters areuniformly scaled versions of the spectrum of a smaller
approximant. In order to remove this oversimplification we have defined in a previous work
[19] scaling functionsf 0,±(E) (not to be confused withf (α)) describing how the energies
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Figure 5. The contraction factorsz2, z4, z6, z8 and zR± (broken curve) as a function of the
quasiperiodic modulationρ. For ρ < 0.26 the contraction factorzR± is the maximal among the
considered ones.

of an approximantfn are obtained from those of approximants of lengthfn−2 and fn−3

(figure 4):

Ei =


f −(Ei) for i = 1, . . . , fn−2

f 0(Ei−fn−2) for i = fn−2+ 1, . . . , fn−1

f +(Ei−fn−1) for i = fn−1+ 1, . . . , fn.

(17)

We remark that this description is inspired by the Hofstadter rules which have been
developed for the Harper equation [23–25] but also apply for other quasiperiodic
Hamiltonians as the one treated here. For a general discussion of this quantitative version
of the Hofstadter rules we refer the reader to [19].

Making the simple approximation thatf 0,± are linear functions,f 0(E) = −zSE,
f ±(E) = zRE ± constant, one arrives again at the homogeneous scaling of the clusters
and τ(q) is given by (16). The simplest improvement of this crude approximation has
been developed in [19] and consists of taking into account the bands which follow an orbit
of period two with respect to the Hofstadter rules (17). The corresponding self-consistent
equation forτ(q) is given by [19]

ω2q

zτR
+ ω

2q

zτR±
+ ω

3q

zτS
= 1 (18)

wherezR± is the contraction factor at the fixed point of order two:

zR± = df ±(E)
dE

∣∣∣∣
E=−f ±(E)

. (19)
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Figure 6. The multifractal spectrumf (α) obtained by the 3z-model compared with data obtained
by diagonalization. The strength of the quasiperiodic modulation isρ = 0.2.

How can the contraction factorzR± be determined? In the first part of this paper it has
been argued that the contraction factor can be calculated by means of the trace map for
special energies. In the case of the periodic chain these are given byE = 2 cos(2πQ/N).
As for the periodic case the conditionE = −f ±(E) yieldsE = ±2 cos(π/(1+ω2)), there
is no cycle in the trace map corresponding to the energy of the orbit of period twoR±.
Having thus no method at hand to calculatezR± analytically, we determine it numerically
by considering the shrinking of the corresponding bands as a function of the approximant
length. The indices of these bands are given by the recursionin = fn−2 − in−1 + 1 with
i2 = i3 = 1, as can be seen from (17) and the fact that for this energyf + andf − apply
alternatively.

In figure 5 the contraction factorszR± are shown together with the contraction factors
known from the first part of this paper.zR± is maximal in the range 0< ρ < 0.26 among
these contraction factors. Since, however, the contraction factors cannot be calculated for all
cycles of the trace map, let alone all energies in the spectrum, the question of the maximal
contraction factor as a function ofρ remains still open. The comparison of the multifractal
spectrumf (α) obtained by (18) with numerical simulations shows that the agreement is
rather good, especially for relatively small values ofρ (figure 6).

Summing up, we have used the trace-map approach to calculate the scaling of the spec-
trum of the Fibonacci chain for certain rational values of the IDOS. Our analysis was based
on the assumption that the IDOS of the energy, the scaling of which is governed by a given
cycle of the trace map, does not change as a function of the strength of the quasiperiodic
modulationρ. A possible proof of this assumption could operate along the ideas of the gap
labelling theorem [26, 21]. Furthermore, we have shown that the maximal scaling exponent
does not always occur at the centre and never occurs at the edges of the spectrum. The
multifractal spectrumf (α) which has been calculated approximately by a method originally
developed for the Harper model is in good agreement with numerical simulations.
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[1] Süto A 1989J. Stat. Phys.56 525
[2] Bellissard J, Iochum B, Scoppola E and Testard D 1989Commun. Math. Phys.125 527
[3] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986Phys. Rev.A 33 1141
[4] Paladin G and Vulpiani A 1986Phys. Rep.156 147
[5] Wilkinson M and Austin E J 1994Phys. Rev.B 50 1420
[6] Guarneri I 1989Europhys. Lett.10 95
[7] Geisel T, Ketzmerick R and Petschel G 1991Phys. Rev. Lett.66 1651
[8] Ketzmerick R, Petschel G and Geisel T 1992Phys. Rev. Lett.69 695
[9] Piéchon F 1996Phys. Rev. Lett.76 4372

[10] Ostlund S and Pandit R 1984Phys. Rev.B 29 1394
[11] Ostlund S, Pandit R, Schellenhuber H J and Siggia E D 1983Phys. Rev. Lett.50 1873
[12] Kohmoto M and Sutherland B and Tang C 1987Phys. Rev.B 35 1020
[13] Kohmoto M and Oono Y 1984Phys. Lett.102A 145
[14] Kohmoto M, Kadanoff L P and Tang C 1983Phys. Rev. Lett.50 1870
[15] Kohmoto M and Banavar J R 1986Phys. Rev.B 34 563
[16] Roberts J A G andBaake M 1994J. Stat. Phys.74 829
[17] Casdagli M 1986Commun. Math. Phys.107 295
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